DOI: 10.1002/ejic.201001257

Facile Oxidative Addition of Organic Halides to Heteroleptic and Homoleptic Pd⁰–N-Heterocyclic Carbene Complexes

Jung-Hyun Lee,^[a] Hyeong-Tak Jeon,^[a] Yong-Joo Kim,*^[a] Kyung-Eun Lee,^[b] Young Ok Jang,^[b] and Soon W. Lee^[b]

Keywords: Palladium / Oxidative addition / N-Heterocyclic carbenes / Halides / Heteroleptic complexes

Novel heteroleptic Pd^0 complexes with an N-heterocyclic carbene (NHC) ligand [(Me₃P)Pd(NHC)] (NHC = IPr, 1; SIPr, 2) were obtained from [Pd(CH₂=CHPh)(PMe₃)₂] and an equivalent of NHC [NHC = 1,3-bis(2,6-diisopropylphenyl)-imidazol-2-ylidene (IPr) or 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr)]. Further treatments of complexes 1 and 2 with an additional equimolar NHC afforded the corresponding bis(NHC)-Pd⁰ complexes

[Pd(NHC)₂] (NHC = IPr, **3**; SIPr, **4**). Complexes **1–4** readily reacted with dichloromethane or chloroform to give C–Cl oxidative addition products. In addition, the reactivity of complex **2** toward other organic halides such as bromobenzene, *trans*-1,2-dichloroethylene, and 5,5'-dibromo-2,2'-bithiophene to produce the corresponding oxidative addition products was investigated. Finally, the ligand replacement of complex **1** with a chelating phosphane was examined.

Introduction

Pd-NHC-catalyzed (NHC=N-heterocyclic carbene) C-C or C-X (X = heteroatom) coupling reactions have been increasingly studied during the past decade.[1-4] In the catalytic cycles, the oxidative addition of organic halides is a fundamental step to give organic products or Pd-σ-bonded intermediates. Although many low-valent group 10 metalphosphane complexes undergo oxidative addition with organic halides,[5-9] quite a few Pd⁰-NHC complexes exhibit such reactivity.[10-12] For example, Cavell's[11] group as well as the groups of Caddick and Cloke^[12] reported the oxidative addition of aryl halides to Pd⁰-NHC complexes. In addition, the groups of Cavell^[11b] and Radius^[13] demonstrated oxidative additions of organic halides and sulfides to Ni⁰-NHC complexes. Theoretical and mechanistic studies on the oxidative addition of aryl halides to Pd⁰-NHC complexes were also reported.[14,15]

The NHC ligand is known to be an alternative group of typical tertiary phosphanes in zero-valent Pd complexes. In addition, the activity of the Pd–NHC-catalyzed cross-couplings varies with the electronic or steric properties of ancillary ligands, and it also depends on the stability or reactivity of the catalysts. To develop efficient catalysts other than known Pd–NHC catalysts, we tried to prepare novel NHC–Pd⁰ complexes from dialkyl–Pd complexes, which may serve

as precursors for zero-valent Pd complexes. We here report the preparation of several phosphane–NHC–Pd⁰ and bis(NHC)–Pd⁰ complexes and demonstrate their oxidative addition reactivity toward various organic halides including halogenated solvents.

Results and Discussion

Preparation of PMe₃-NHC-Pd⁰ Complexes

Room-temperature reactions of [Pd(CH₂=CHPh)-(PMe₃)₂], [16,17] which could be generated in situ from *trans*-[PdEt₂L₂] and styrene, with IPr [IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene] or SIPr [1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene] in a 1:1 molarratiogavenovelPMe₃–NHC–Pd⁰complexes[(Me₃P)Pd-(NHC)] (NHC = IPr, 1; SIPr, 2) (Scheme 1). As mentioned in the Introduction, the above NHC ligands were adopted as supporting ligands to the Pd center in our study.

$$Et-Pd-Et\\PMe_3\\Phe_3\\P$$

Scheme 1.

Gangneung 210-702, South Korea

Fax: +82-33-640-2264

[[]b] Department of Chemistry, Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Korea

[[]a] Department of Chemistry, Kangnung-Wonju National University,

E-mail: yjkim@ kangnung.ac.kr

Complexes 1 and 2 were obtained as pale yellow solids, which were moderately stable in the solid state at room temperature but air sensitive in solution. In particular, these complexes slowly decomposed in polar solvents and readily reacted with halogenated solvents (see Scheme 4 below). The ¹H and ³¹P{¹H} NMR spectra of the final products indicate that these contained a small amount of the bis- $(carbene)-Pd^0$ complexes $[Pd(NHC)_2]$ [NHC = IPr (3) orSIPr (4)],[17] which were presumably formed by the dissociation of PMe₃ during the reaction. As a result, an analytically pure product could not be obtained. Moreover, during the course of recrystallization in ditheyl ether or THF, complexes 1 and 2 partially dissociated the PMe₃ ligand to give the bis(NHC)-Pd⁰ complexes 3 and 4 (Scheme 2). A similar phosphane dissociation was also previously observed in the reactions between [Pd{P(o-tolyl)₃}₂] and IPr, SIPr, or 1,3bis(adamantly)imidazolin-2-ylidene to give phosphane-NHC-Pd⁰ complexes $[(R_3P)Pd(NHC)]$ [NHC = IPr, SIPr; $PR_3 = P(o-tol)_3$ or $bis(NHC)-Pd^0$ complexes.^[18,19] Recently, Nolan and co-workers^[20] reported a general synthetic route to phosphane–NHC–Pd⁰ complexes, [(R₃P)-Pd(NHC)] [NHC = IPr, SIPr; PR_3 = PPh_3 , PCy_3 , $P(Bu)(Ad)_2$, from [(NHC)Pd(η^3 -allyl)Cl] and tertiary phosphanes. The ¹³C{¹H} NMR spectrum of 1 shows a doublet $(J_{\rm P.C} = 16 \, {\rm Hz})$ at $\delta = 178.5 \, {\rm ppm}$ due to the NCN carbene carbon, which indicates that the PMe₃ ligand in complex 1 exerts a stronger trans influence than other phosphanes $(J_{P.C} = 83-94 \text{ Hz})$ in the above-mentioned phosphane-NHC-Pd complexes.

Scheme 2.

To confirm the formation of bis(NHC)–Pd⁰ complexes, complexes 1 and 2 were treated with one additional equivalent of the NHC agent (Scheme 2), and complexes 3 and 4 were obtained as yellow (64%) and orange (46%) crystals, respectively. Consistent with our expectation, the NMR (¹H, ¹³C{¹H}, and ³¹P{¹H} NMR) spectroscopic data of complexes 3 and 4 agree well with those previously reported.^[18]

We also examined the reactivity of bis(phosphane)–diethyl–Pd^{II} complexes toward NHC ligands, as shown in Scheme 3. In these reactions, one PMe₃ ligand was replaced with the NHC ligand, and NHC–diethyl–Pd^{II} complexes *trans*-[Pd(PMe₃)Et₂(IPr)] (5) and *trans*-[Pd(PMe₃)Et₂(SIPr)] (6) were obtained. *trans*- or *cis*-diethyl–Pd^{II} complexes that possess tertiary phosphanes are known to decompose by β -H elimination or reductive elimination.^[21] The starting material, *trans*-[PdEt₂(PMe₃)₂]^[16b] is thermally unstable in solid and in solution at room temperature. However, in this

work, we could prepare unique NHC-stabilized bis(diethyl)-PdII complexes that are moderately stable both in the solid state and in solution at room temperature. We monitored the ¹H NMR spectra of compounds 5 and 6 dissolved in THF or toluene by heating the solutions from room temperature to 70 °C. The solutions were thermally stable to 50 °C. When the temperature was raised to 70 °C, decomposition of the compounds occurred. However, we could not identify PMe₃-NHC-Pd⁰ compounds due to their complicated spectral patterns. These results strongly support the known fact that NHC ligands behave as better stabilizing ancillary ligands than tertiary phosphane ligands. Complexes 5 and 6 were isolated as white crystals, and the molecular structure of complex 6 in Figure 1 was determined by X-ray diffraction. The crystal and refinement data of 6 is summarized in Table 1. The coordination sphere of Pd can be described as a square plane that consists of one NHC, one PMe3, and two trans-Et ligands. The N1-C1 [1.345(2) Å] and N2-C1 [1.355(2) Å] bonds, in which C1 is the carbene carbon, are significantly shorter than the other N-C bonds [the average is 1.460(2) Å]. The shortening of the N-C (carbene) bonds probably reflects the resonance of those bonds due to the lone pair of electrons on the carbene carbon. Terminal methyl groups on the ethyl ligands are

Scheme 3.

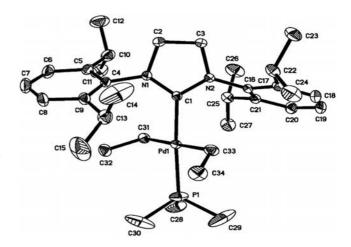


Figure 1. ORTEP drawing of **6.** Selected bond lengths [Å] and angles [°]: Pd1–C1 2.027(2), Pd1–C31 2.135(2), Pd1–C33 2.144(2), Pd1–P1 2.2533(7), N1–C1 1.345(2), N(1)–C4 1.446(2), N1–C2 1.478(3), N2–C1 1.355(2), N2–C16 1.439(2), N2–C3 1.475(3); C1–Pd1–C31 90.44(8), C1–Pd1–C33 88.60(8), C31–Pd1–C33 179.01(9), C1–Pd1–P1 176.22(6), C31–Pd1–P1 90.25(6), C33–Pd1–P1 90.73(7), N1–C1–N2 106.3(2), C1–N1–C2 112.8(2), C1–N2–C3 112.5(2).

FULL PAPER Y.-J. Kim et al.

Table 1. Crystal data and structure refinements for complexes 6-8, 10, and 11-15.

	6	7	8	10	11 •Et ₂ O
Formula $M_{\rm r}$	C ₃₄ H ₅₇ N ₂ PPd 631.19	C ₃₁ H ₄₇ Cl ₂ N ₂ P ₁ Pd 655.98	C ₃₁ H ₄₉ Cl ₂ N ₂ PPd 657.99	C ₅₅ H ₇₈ Cl ₂ N ₄ Pd 972.51	C ₅₈ H ₈₂ Cl ₂ N ₄ OPd 1028.58
T[K]	296(2)	296(2)	296(2)	200(2)	200(2)
Crystal size [mm ³]	$0.42 \times 0.38 \times 0.32$	$0.40 \times 0.30 \times 0.20$	$0.52 \times 0.44 \times 0.36$	$0.32 \times 0.25 \times 0.22$	$0.25 \times 0.20 \times 0.13$
Crystal system	orthorhombic	monoclinic	monoclinic	triclinic	orthorhombic
Space group	Pbca	$P2_1/n$	$P2_1/n$	PĪ	$P2_{1}2_{1}2_{1}$
	18.9961(3)	11.3708(1)	11.3636(5)	12.3144(8)	12.9601(7)
b [Å]	15.7425(2)	20.5091(2)	20.7074(9)	12.3951(7)	20.4366(11)
c [Å]	23.3332(4)	14.3001(2)	14.2241(6)	17.2209(10)	21.3284(11)
a [°]	23.3332(1)	11.5001(2)	11.2211(0)	82.391(1)	21.320 1(11)
β [°]		91.596(1)	91.459(2)	87.649(2)	
γ [°]		71.370(1)	71.437(2)	88.439(1)	
$V[A^3]$	6977.7(2)	3333.56(6)	3346.0(3)	2602.6(3)	5649.0(5)
Z	8	4	4	2	4
$d_{\text{calcd.}} [\text{g cm}^{-3}]$	1.202	1.307	1.306	1.241	1.209
$\mu \text{ [mm}^{-1}]$	0.600	0.786	0.783	0.498	0.463
F(000)	2688	1368	1376	1032	2184
	0.7866	0.7439	0.6862	0.8570	0.8929
T_{\min}				0.8984	0.8929
T _{max}	0.8311	0.8586 51129	0.7657		
Measured reflections	116702		45489	19369	42254
Unique reflections	8699	8278	8142	12619	13825
$R(\text{int})$ reflections $[I > 2\sigma(I)]$	6937	6685	6807	5657	7956
Parameters refined	343	334	335	559	595
Max. $\Delta \rho \left[e \mathring{A}^{-3} \right]$	0.421	0.309	0.399	2.022	1.099
Min. $\Delta \rho$ [e Å ⁻³]	-0.326	-0.268	-0.337	-1.185	-1.866
GoF on F^2	1.100	1.012	1.031	0.887	0.985
$R_1^{[a]}$	0.0318	0.0269	0.0251	0.0678	0.0575
$wR_2^{[b]}$	0.0686	0.0632	0.0622	0.1155	0.0804
R (all data)	0.0468	0.0392	0.0344	0.1568	0.1372
$wR_2^{[a]}$ (all data)	0.0793	0.0694	0.0677	0.1509	0.1099
	12	13	14·C ₆ H ₁₄	15	
Formula	$\frac{12}{C_{36}H_{52}BrN_2PPd}$	$\frac{13}{C_{32}H_{49}Cl_2N_2PPd}$	$\frac{14 \cdot C_6 H_{14}}{C_{72} H_{112} Br_2 N_4 P_2 Pd_2 S_2}$		
				15 C ₅₄ H ₅₂ P ₄ Pd 931.24	
Formula M_r T [K]	C ₃₆ H ₅₂ BrN ₂ PPd	$C_{32}H_{49}Cl_2N_2PPd$	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$	$C_{54}H_{52}P_4Pd$	
$M_{ m r}$	C ₃₆ H ₅₂ BrN ₂ PPd 631.19	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00	C ₇₂ H ₁₁₂ Br ₂ N ₄ P ₂ Pd ₂ S ₂ 1556.36	C ₅₄ H ₅₂ P ₄ Pd 931.24	
$rac{M_{ m r}}{T[{ m K}]}$	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2)	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2)	C ₇₂ H ₁₁₂ Br ₂ N ₄ P ₂ Pd ₂ S ₂ 1556.36 200(2)	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2)	
M _r T [K] Crystal size [mm³] Crystal system	$C_{36}H_{52}BrN_2PPd$ 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 296(2) 0.20×0.16×0.12 monoclinic	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) $0.17 \times 0.15 \times 0.04$	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$	
M _r T [K] Crystal size [mm³] Crystal system Space group	$C_{36}H_{52}BrN_2PPd$ 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic $P2_1/c$	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 296(2) $0.20 \times 0.16 \times 0.12$	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic $P\bar{1}$	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c	
$M_{\rm r}$ T [K] Crystal size [mm ³] Crystal system Space group a [Å]	$C_{36}H_{52}BrN_2PPd$ 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 296(2) 0.20×0.16×0.12 monoclinic $P2_1/c$	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17 × 0.15 × 0.04 triclinic $P\bar{1}$ 10.543(1)	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic	
$M_{\rm r}$ T [K] Crystal size [mm ³] Crystal system Space group a [Å] b [Å]	$C_{36}H_{52}BrN_2PPd$ 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic $P2_1/c$ 12.9802(7)	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic $P2_1/c$ 13.8695(5)	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic $P\bar{1}$ 10.543(1) 10.875(1)	$C_{54}H_{52}P_4Pd$ 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7)	
$M_{\rm r}$ T [K] Crystal size [mm ³] Crystal system Space group a [Å] b [Å] c [Å]	$C_{36}H_{52}BrN_2PPd$ 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic $P2_1/c$ 12.9802(7) 15.5482(8)	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 296(2) $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ 13.8695(5) 23.4601(8)	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2)	$C_{54}H_{52}P_4Pd$ 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6)	
M _r T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°]	$C_{36}H_{52}BrN_2PPd$ 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic $P2_1/c$ 12.9802(7) 15.5482(8)	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 296(2) $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ 13.8695(5) 23.4601(8)	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2) 84.535(3)	$C_{54}H_{52}P_4Pd$ 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6)	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°]	$C_{36}H_{52}BrN_2PPd$ 631.19 296(2) $0.26 \times 0.16 \times 0.10$ monoclinic $P2_1/c$ 12.9802(7) 15.5482(8) 17.9521(8)	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 296(2) $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ 13.8695(5) 23.4601(8) 20.8522(7)	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2)	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8)	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°]	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2)	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 $296(2)$ $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ $13.8695(5)$ $23.4601(8)$ $20.8522(7)$ $92.265(2)$	C ₇₂ H ₁₁₂ Br ₂ N ₄ P ₂ Pd ₂ S ₂ 1556.36 200(2) 0.17×0.15×0.04 triclinic PĪ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3)	$C_{54}H_{52}P_4Pd$ 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1)	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] γ [°] γ [A³] Z	$C_{36}H_{52}BrN_2PPd$ 631.19 296(2) $0.26 \times 0.16 \times 0.10$ monoclinic $P2_1/c$ 12.9802(7) 15.5482(8) 17.9521(8)	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 $296(2)$ $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ $13.8695(5)$ $23.4601(8)$ $20.8522(7)$ $92.265(2)$	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3)	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8)	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] γ [°] Z	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26×0.16×0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 $296(2)$ $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ $13.8695(5)$ $23.4601(8)$ $20.8522(7)$ $92.265(2)$ $6779.6(4)$ 8	C ₇₂ H ₁₁₂ Br ₂ N ₄ P ₂ Pd ₂ S ₂ 1556.36 200(2) 0.17×0.15×0.04 triclinic PĪ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1	$C_{54}H_{52}P_4Pd$ 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm $^{-3}$]	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26×0.16×0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 $296(2)$ $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ $13.8695(5)$ $23.4601(8)$ $20.8522(7)$ $92.265(2)$ $6779.6(4)$ 8 1.313	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm $^{-3}$] μ [mm $^{-1}$]	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1 1.357 1.660	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm $^{-3}$] μ [mm $^{-1}$] $F(000)$	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 $296(2)$ $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ $13.8695(5)$ $23.4601(8)$ $20.8522(7)$ $92.265(2)$ $6779.6(4)$ 8 1.313 0.775 2800	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) $0.17 \times 0.15 \times 0.04$ triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1 1.357 1.660 808	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm $^{-3}$] μ [mm $^{-1}$] $F(000)$ $T_{\rm min}$	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 $296(2)$ $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ $13.8695(5)$ $23.4601(8)$ $20.8522(7)$ $92.265(2)$ $6779.6(4)$ 8 1.313 0.775 2800 0.8605	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) $0.17 \times 0.15 \times 0.04$ triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1 1.357 1.660 808 0.7656	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm³] μ [mm³] $F(000)$ $T_{\rm min}$ $T_{\rm max}$	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775 2800 0.8605 0.9128	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) $0.17 \times 0.15 \times 0.04$ triclinic $P\bar{1}$ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1 1.357 1.660 808 0.7656 0.9366	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm $^{-3}$] μ [mm $^{-1}$] $F(000)$ $T_{\rm min}$ $T_{\rm max}$ Measured reflections	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775 2800 0.8605 0.9128 100790	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 200(2) 0.17×0.15×0.04 triclinic P1 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1 1.357 1.660 808 0.7656 0.9366 14201	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm $^{-3}$] μ [mm $^{-1}$] $F(000)$ $T_{\rm min}$ $T_{\rm max}$ Measured reflections Unique reflections	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723 8510	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 $296(2)$ $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ $13.8695(5)$ $23.4601(8)$ $20.8522(7)$ $92.265(2)$ $6779.6(4)$ 8 1.313 0.775 2800 0.8605 0.9128 100790 16421	C ₇₂ H ₁₁₂ Br ₂ N ₄ P ₂ Pd ₂ S ₂ 1556.36 200(2) 0.17×0.15×0.04 triclinic PI 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1 1.357 1.660 808 0.7656 0.9366 14201 9236	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582	
$\begin{array}{l} M_{\rm r} \\ T [{\rm K}] \\ Crystal \ size \ [{\rm mm^3}] \\ Crystal \ system \\ {\rm Space \ group} \\ a [\mathring{\rm A}] \\ b [\mathring{\rm A}] \\ c [\mathring{\rm A}] \\ a [^{\rm e}] \\ \beta [^{\rm e}] \\ \gamma [^{\rm e}] \\ V [\mathring{\rm A}^3] \\ Z \\ d_{\rm calcd.} [{\rm g cm^{-3}}] \\ \mu [{\rm mm^{-1}}] \\ F(000) \\ T_{\rm min} \\ T_{\rm max} \\ {\rm Measured \ reflections} \\ {\rm Unique \ reflections} \\ {\rm Unique \ reflections} \\ {\rm K(int) \ reflections} [I > 2\sigma(I)] \\ \end{array}$	$C_{36}H_{52}BrN_2PPd$ 631.19 $296(2)$ $0.26 \times 0.16 \times 0.10$ monoclinic $P2_1/c$ $12.9802(7)$ $15.5482(8)$ $17.9521(8)$ $100.257(2)$ $3565.2(3)$ 4 1.360 1.712 1512 0.6645 0.8475 32723 8510 5050	$C_{32}H_{49}Cl_2N_2PPd$ 670.00 $296(2)$ $0.20 \times 0.16 \times 0.12$ monoclinic $P2_1/c$ $13.8695(5)$ $23.4601(8)$ $20.8522(7)$ $92.265(2)$ $6779.6(4)$ 8 1.313 0.775 2800 0.8605 0.9128 100790 16421 7055	C ₇₂ H ₁₁₂ Br ₂ N ₄ P ₂ Pd ₂ S ₂ 1556.36 200(2) 0.17×0.15×0.04 triclinic PĪ 10.543(1) 10.875(1) 17.851(2) 84.535(3) 85.478(3) 69.365(3) 1904.4(4) 1 1.357 1.660 808 0.7656 0.9366 14201 9236 3505	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582 3736	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm $^{-3}$] μ [mm $^{-1}$] $F(000)$ $T_{\rm min}$ $T_{\rm max}$ Measured reflections Unique reflections $R({\rm int})$ reflections [$I > 2\sigma(I)$] Parameters refined	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723 8510 5050 371	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775 2800 0.8605 0.9128 100790 16421 7055 685	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 $200(2)$ $0.17 \times 0.15 \times 0.04$ triclinic $P\overline{1}$ $10.543(1)$ $10.875(1)$ $17.851(2)$ $84.535(3)$ $85.478(3)$ $69.365(3)$ $1904.4(4)$ 1 1.357 1.660 808 0.7656 0.9366 14201 9236 3505 373	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582 3736 267	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [6] γ [°] γ [C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723 8510 5050 371 0.409	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775 2800 0.8605 0.9128 100790 16421 7055 685 0.373	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 $200(2)$ $0.17 \times 0.15 \times 0.04$ triclinic $P\overline{1}$ $10.543(1)$ $10.875(1)$ $17.851(2)$ $84.535(3)$ $85.478(3)$ $69.365(3)$ $1904.4(4)$ 1 1.357 1.660 808 0.7656 0.9366 14201 9236 3505 373 0.653	$C_{54}H_{52}P_4Pd$ 931.24 200(2) $0.21 \times 0.18 \times 0.17$ monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582 3736 267 0.623	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm $^{-3}$] μ [mm $^{-1}$] $F(000)$ $T_{\rm min}$ $T_{\rm max}$ Measured reflections Unique reflections $R({\rm int})$ reflections $[I>2\sigma(I)]$ Parameters refined Max. $\Delta \rho$ [e Å $^{-3}$] Min. $\Delta \rho$ [e Å $^{-3}$]	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723 8510 5050 371 0.409 -0.399	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775 2800 0.8605 0.9128 100790 16421 7055 685 0.373 -0.612	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 $200(2)$ $0.17 \times 0.15 \times 0.04$ triclinic $P\overline{1}$ $10.543(1)$ $10.875(1)$ $17.851(2)$ $84.535(3)$ $85.478(3)$ $69.365(3)$ $1904.4(4)$ 1 1.357 1.660 808 0.7656 0.9366 14201 9236 3505 373 0.653 -1.141	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582 3736 267 0.623 -0.699	
$\begin{array}{l} M_{\rm r} \\ T [{\rm K}] \\ Crystal \ size \ [{\rm mm}^3] \\ Crystal \ system \\ {\rm Space \ group} \\ a [\mathring{\rm A}] \\ b [\mathring{\rm A}] \\ c [\mathring{\rm A}] \\ a [^{\circ}] \\ \beta [^{\circ}] \\ \gamma [^{\circ}] \\ V [\mathring{\rm A}^3] \\ Z \\ d_{\rm calcd.} [{\rm g cm}^{-3}] \\ \mu [{\rm mm}^{-1}] \\ F(000) \\ T_{\rm min} \\ T_{\rm max} \\ {\rm Measured \ reflections} \\ {\rm Unique \ reflections} \\ {\rm Unique \ reflections} \\ {\rm K(int) \ reflections} [I > 2\sigma(I)] \\ {\rm Parameters \ refined} \\ {\rm Max.} \ \Delta \rho [{\rm e} \mathring{\rm A}^{-3}] \\ {\rm Min.} \ \Delta \rho [{\rm e} \mathring{\rm A}^{-3}] \\ {\rm GoF \ on \ } F^2 \\ \end{array}$	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723 8510 5050 371 0.409 -0.399 0.958	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775 2800 0.8605 0.9128 100790 16421 7055 685 0.373 -0.612 0.943	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 $200(2)$ $0.17 \times 0.15 \times 0.04$ triclinic $P\overline{1}$ $10.543(1)$ $10.875(1)$ $17.851(2)$ $84.535(3)$ $85.478(3)$ $69.365(3)$ $1904.4(4)$ 1 1.357 1.660 808 0.7656 0.9366 14201 9236 3505 373 0.653 -1.141 0.761	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582 3736 267 0.623 -0.699 0.955	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm³] μ [mm¹] $F(000)$ $T_{\rm min}$ $T_{\rm max}$ Measured reflections Unique reflections $R({\rm int})$ reflections $[I>2\sigma(I)]$ Parameters refined Max. $\Delta \rho$ [e ų] Min. $\Delta \rho$ [e ų] GoF on F^2 $R_1^{[a]}$	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723 8510 5050 371 0.409 -0.399 0.958 0.0407	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775 2800 0.8605 0.9128 100790 16421 7055 685 0.373 -0.612 0.943 0.0517	$\begin{array}{c} C_{72}H_{112}Br_2N_4P_2Pd_2S_2\\ 1556.36\\ 200(2)\\ 0.17\times0.15\times0.04\\ \text{triclinic}\\ \textit{P1}\\ 10.543(1)\\ 10.875(1)\\ 17.851(2)\\ 84.535(3)\\ 85.478(3)\\ 69.365(3)\\ 1904.4(4)\\ 1\\ 1.357\\ 1.660\\ 808\\ 0.7656\\ 0.9366\\ 14201\\ 9236\\ 3505\\ 373\\ 0.653\\ -1.141\\ 0.761\\ 0.0581 \end{array}$	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582 3736 267 0.623 -0.699 0.955 0.0405	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [6] γ [°] γ [C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723 8510 5050 371 0.409 -0.399 0.958 0.0407 0.0625	$\begin{array}{c} C_{32}H_{49}Cl_2N_2PPd\\ 670.00\\ 296(2)\\ 0.20\times0.16\times0.12\\ monoclinic\\ P2_1/c\\ 13.8695(5)\\ 23.4601(8)\\ 20.8522(7)\\ 92.265(2)\\ 6779.6(4)\\ 8\\ 1.313\\ 0.775\\ 2800\\ 0.8605\\ 0.9128\\ 100790\\ 16421\\ 7055\\ 685\\ 0.373\\ -0.612\\ 0.943\\ 0.0517\\ 0.0877\\ \end{array}$	$C_{72}H_{112}Br_2N_4P_2Pd_2S_2$ 1556.36 $200(2)$ $0.17 \times 0.15 \times 0.04$ triclinic $P\bar{1}$ $10.543(1)$ $10.875(1)$ $17.851(2)$ $84.535(3)$ $85.478(3)$ $69.365(3)$ $1904.4(4)$ 1 1.357 1.660 808 0.7656 0.9366 14201 9236 3505 373 0.653 -1.141 0.761 0.0581 0.0789	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582 3736 267 0.623 -0.699 0.955 0.0405 0.0729	
$M_{\rm r}$ T [K] Crystal size [mm³] Crystal system Space group a [Å] b [Å] c [Å] a [°] β [°] γ [°] V [ų] Z $d_{\rm calcd.}$ [g cm³] μ [mm¹] $F(000)$ $T_{\rm min}$ $T_{\rm max}$ Measured reflections Unique reflections $R({\rm int})$ reflections $[I>2\sigma(I)]$ Parameters refined Max. $\Delta \rho$ [e ų] Min. $\Delta \rho$ [e ų] GoF on F^2 $R_1^{[a]}$	C ₃₆ H ₅₂ BrN ₂ PPd 631.19 296(2) 0.26 × 0.16 × 0.10 monoclinic P2 ₁ /c 12.9802(7) 15.5482(8) 17.9521(8) 100.257(2) 3565.2(3) 4 1.360 1.712 1512 0.6645 0.8475 32723 8510 5050 371 0.409 -0.399 0.958 0.0407	C ₃₂ H ₄₉ Cl ₂ N ₂ PPd 670.00 296(2) 0.20 × 0.16 × 0.12 monoclinic P2 ₁ /c 13.8695(5) 23.4601(8) 20.8522(7) 92.265(2) 6779.6(4) 8 1.313 0.775 2800 0.8605 0.9128 100790 16421 7055 685 0.373 -0.612 0.943 0.0517	$\begin{array}{c} C_{72}H_{112}Br_2N_4P_2Pd_2S_2\\ 1556.36\\ 200(2)\\ 0.17\times0.15\times0.04\\ \text{triclinic}\\ \textit{P1}\\ 10.543(1)\\ 10.875(1)\\ 17.851(2)\\ 84.535(3)\\ 85.478(3)\\ 69.365(3)\\ 1904.4(4)\\ 1\\ 1.357\\ 1.660\\ 808\\ 0.7656\\ 0.9366\\ 14201\\ 9236\\ 3505\\ 373\\ 0.653\\ -1.141\\ 0.761\\ 0.0581 \end{array}$	C ₅₄ H ₅₂ P ₄ Pd 931.24 200(2) 0.21 × 0.18 × 0.17 monoclinic C2/c 18.2610(7) 13.2898(6) 20.0819(8) 109.419(1) 4596.3(3) 4 1.346 0.579 1928 0.8881 0.9080 16453 5582 3736 267 0.623 -0.699 0.955 0.0405	

[a] $R_1 = \Sigma ||F_o| - |F||/\Sigma |F_o|$. [b] $wR_2 = \Sigma [w(F_o^2 - F_o^2)^2]/\Sigma [w(F_o^2)^2]^{\frac{1}{2}}$.

oriented perpendicular to the square plane that contains the NHC ligand. The Pd-C bond lengths [2.135(2) and 2.144(2) Å] in complex 6 are somewhat longer than those

found for other Pd–dialkyl complexes: 2.089(3) and 2.090(3) Å in cis-[PdMe₂(PPh₂Me)];^[22] 2.026 and 2.029 Å in [PdMe₂(Me₂NCH₂CH₂NMe₂)];^[23] and 2.087(4) Å in

Eurjic european Journal of Inorganic Chemistry

[PdMe₂(Me₂PCH₂CH₂PMe₂)].^[23] However, we could not provide a clear explanation due to the limited structural data available for *trans*-dialkyl–Pd complexes.

Reactivity of PMe₃-NHC-Pd⁰ Complexes toward Halogenated Solvents (Dichloromethane and Chloroform)

Attempts to recrystallize PMe_3 –NHC– Pd^0 complexes 1 and 2 from halogenated solvents such as CH_2Cl_2 or $CHCl_3$ failed because these complexes reacted with those solvents (Scheme 4).

Scheme 4.

When complex 1 or 2 was dissolved in CH₂Cl₂ at room temperature, white solids of [(Me₃P)ClPd(CH₂Cl)(IPr)] (7, 84%) or [(Me₃P)ClPd(CH₂Cl)(SIPr)] (8, 69%) were obtained. These reactions also occurred in the presence of either a stoichiometric or an excess amount of CH₂Cl₂ in organic solvents. However, in spite of several attempts in CHCl₃, pure products could not be obtained because they were thermally unstable and inseparable mixtures. Complexes 7 and 8 were characterized by ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy, elemental analyses, as well as X-ray diffraction.

The methylene signals (Pd–C H_2 Cl) in the ¹H NMR spectra of 7 and 8 in CDCl₃ at –40 °C appeared at δ = 3.08 and 3.14 ppm, respectively, as a doublet ($J_{\rm P,H}$ = 7.3 Hz), which are comparable to the typical C H_2 X signals; for example, those in *trans*-[PdCl(CH₂Cl){P(tBu)₂H}₂]^[24] (δ = 3.73 ppm in C₆D₆ at 298 K) and *trans*-[PdCl(CH₂Cl)(PPh₃)₂]^[25] (δ = 3.92 ppm in C₆D₆ at 298 K). A singlet in the ³¹P{¹H} NMR spectra of complexes 7 and 8 support the presence of one PMe₃ ligand coordinated to the Pd center. The doublets ($J_{\rm P,C}$ = 158 and 147 Hz) at 183.6 (7) and 209.8 ppm (8) due to the carbene carbon (N*C*N) in the ¹³C NMR spectra indicate the *trans* orientation of the carbene (NHC) and the PMe₃ ligands.

As shown in Figure 2, the methine signals $CH(CH_3)_2$ of the 2,6-diisopropylphenyl groups on the imidazoline ring of 7 exhibit temperature dependence in the range of -40 to 20 °C in CDCl₃. At -40 °C, the methine signals in the iPr_2 and iPr'_2 groups split into two septets at $\delta = 2.78$ and 3.26 ppm. This phenomenon arises because the iPr groups do not interchange by the phenyl-ring rotation at this temperature.

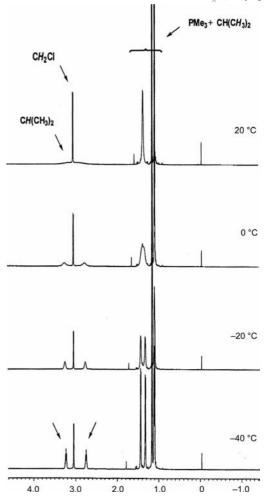


Figure 2. Variable-temperature ¹H NMR (600 MHz) spectroscopic signals for the alkyl substituents of 7 from –40 to 20 °C in CDCl₃.

At around 0 °C, the methine signals becme broad. At 20 °C, a complete broadening of the methine signals occurs, and the signals can be hardly identified. This type of peak broadening is also observed for the methyl protons of the *i*Pr and *i*Pr' groups. Two well-separated doublets ($\delta = 1.36$ and 1.47 ppm) due to the methyl protons colalesce at 0 °C. In the coalescence temperature range, ¹H NMR spectra of 7 were carefully taken as a function of temperature at 2 °C intervals to find out the exact coalescence temperature (T_c) . As a result, we could determine the coalescence temperatures 22 °C for the methine (CH) and -1 °C for the methyl signals of $CH(CH_3)_2$ of the 2,6-diisopropylphenyl groups, respectively. At these temperatures, the free energies for activation barriers were calculated from the Eyring equation $[\Delta G^{\ddagger} = 19.12 T_{c}(10.32 + \log T_{c} - \log k_{c}); k_{c} = \pi \Delta v / \sqrt{2}; \Delta v =$ the chemical shift difference in hertz between two separate signals]. [26] The ΔG^{\ddagger} value for the rotation of the methine groups in CDCl₃ is $(13.5 \pm 0.10) \, \text{kJ} \, \text{mol}^{-1}$ and that of the methyl groups is $(13.2 \pm 0.10) \text{ kJ mol}^{-1}$.

The organic substituents of complex 7 were characterized by heteronuclear multiple quantum coherence (HMQC), COSY(H–H), NOESY, and distortionless enhancement by FULL PAPER
Y.-J. Kim et al.

polarization rransfer (DEPT) NMR spectroscopic techniques.

X-ray crystal structures (see Figures 3 and 4) confirm the formation of complexes 7 and 8. Because these complexes are isostructural, only the structure of complex 7 is described in detail. In Figure 3 (complex 7), the coordination sphere Pd1 can be described as a square plane, with the Cl and CH₂Cl ligands being trans to each other. The imidazoline ring is significantly twisted from the two 2,6-bis(isopropyl)phenyl rings with the dihedral angle of 73.54(6) or 78.16(7)°, probably because of the two bulky isopropyl substituents on the phenyl rings. The Pd-C (Pd-CH₂Cl) bond lengths [Pd1–C31: 2.021(2) Å in 7; 2.018(2) Å in 8] are close to that [2.031(2) Å] of trans- $[PdCl(CH_2Cl)(PPh_3)_2]$, [25] which was prepared from [PdCl₂(cod)] (cod = 1,2-cyclooctadiene), excess amounts of diazomethane or bis(chloromethyl)mercury, followed by the ligand replacement with PPh₃. Although many cases of the thermal or photoinduced oxidative addition of dihalomethanes to low-valent Pt,[27-30] Pd, [24,31-33] Rh, [34-43] Ru, [44] Ir, [45-47] Co, [48] and Au [49] complexes were reported, only a few cases have been known to date for zero-valent Pd complexes, including [Pd(PtBu₂- H_{3} , $[Pd(PCy_{3})_{2}(dba)]$ (dba = dibenzylideneacetone; Cy = cyclohexyl),^[31] and [PdN(CH₂CH₂PPh₂)₃].^[28] Furthermore, there have been no reports for the structural characterization of the oxidative addition complex Cl-PdCH₂Cl by X-ray diffraction. Complexes 7 and 8 provide the first examples of oxidative addition of dichloromethane to Pd⁰-NHC complexes.

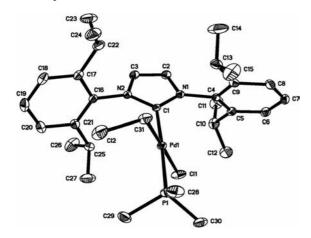


Figure 3. ORTEP drawing of 7. Selected bond lengths [Å] and angles [°]: Pd1–C31 2.021(2), Pd1–C1 2.055(2), Pd1–P1 2.3031(5), Pd1–C11 2.3831(5), C12–C31 1.817(2), N1–C1 1.362(2), N1–C2 1.382(2), N1–C4 1.448(2), N2–C1 1.360(2), N2–C3 1.383(2), N2–C16 1.449(2); C31–Pd1–C1 91.23(7), C31–Pd1–P1 90.27(6), C1–Pd1–P1 176.97(5), C31–Pd1–C11 179.08(7), C12–C31–Pd1 113.61(12).

The bis(NHC)–Pd⁰ complexes (NHC = IPr, **3**; SIPr, **4**) also react with halogenated solvents (Scheme 5). In the case of CH_2Cl_2 , rapid oxidative addition occurs to produce the corresponding addition products, $[ClPd(CH_2Cl)(IPr)_2]$ (**9**) and $[ClPd(CH_2Cl)(SIPr)_2]$ (**10**), the formation of which can readily be monitored by the color change from the initial orange to colorless. The methylene signals (CH_2Cl) in the

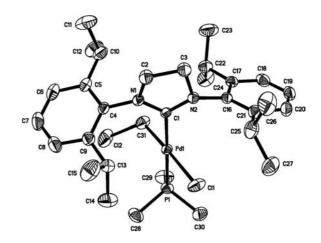


Figure 4. ORTEP drawing of **8**. Selected bond lengths [Å] and angles [°]: Pd1–C31 2.018(2), Pd1–C1 2.059(1), Pd1–P1 2.3112(4), Pd1–C11 2.3828(5), C12–C31 1.822(2), N1–C1 1.341(2), N1–C2 1.475(2), N1–C4 1.441(2), N2–C1 1.346(2), N2–C16 1.441(2), N2–C3 1.477(2), C2–C3 1.495(3); C31–Pd1–C1 91.38(7), C31–Pd1–P1 89.96(6), C1–Pd1–P1 177.78(4), C31–Pd1–C11 177.86(6), C12–C31–Pd1 113.1(1).

¹H NMR spectra of **9** and **10** appear at $\delta = 3.05$ and 3.07 ppm as a singlet, respectively. In sharp contrast, complex **3** reacted with chloroform to produce dichloro–NHC–Pd^{II} species [Pd(IPr)₂Cl₂] (**11**) in 79% yield. In this reaction, chloroform served as a chlorine source. Although we have no concrete evidence about the side products, we speculate that the product may have been formed by oxidative addition of CHCl₃, followed by the C–Cl cleavage at some stage. Molecular structures of **10** (Figure 5) and **11** (Figure 6) were determined by X-ray diffraction. The coordination sphere of **10** can be described as square planar, and the Cl and CH₂Cl ligands are *trans* to each other.

Scheme 5.

The five-membered rings in the NHC ligands are significantly twisted from the molecular plane. The coordination sphere of 11 is also square-planar with a set of *trans*-chlorido ligands and a set of *trans*-NHC ligands.

Various organic halides readily undergo oxidative addition to electronically unsaturated Pd⁰ complexes.^[5] In this study, small organic halogenated molecules such as dichloromethane or chloroform oxidatively add to the phos-

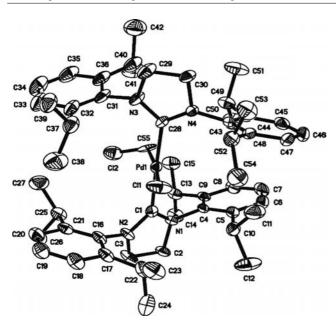


Figure 5. ORTEP drawing of **10**. Selected bond lengths [Å] and angles [°]: Pd1–C28 2.056(5), Pd1–C1 2.080(6), Pd1–C55 2.115(5), Pd1–C11 2.393(2), Cl2–C55 1.554(6); C28–Pd1–C1 178.3(2), C28–Pd1–C55 94.2(2), C1–Pd1–C55 86.6(2), C28–Pd1–C11 82.6(1), N2–C1–N1 106.1(5), N3–C28–N4 106.2(4).

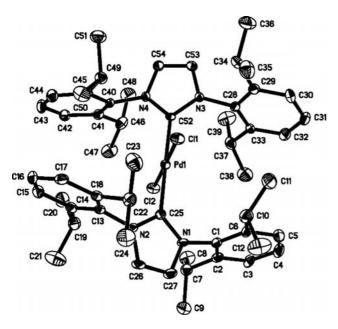


Figure 6. ORTEP drawing of $11 \cdot \text{Et}_2\text{O}$. Selected bond lengths [Å] and angles [°]: Pd1–C52 2.040(4), Pd1–C25 2.043(4), Pd1–Cl1 2.230(1), Pd1–Cl2 2.303(1), N1–C25 1.363(6), N2–C25 1.358(5), N3–C52 1.361(5), N4–C52 1.363(5); C52–Pd1–C25 179.1(2), C52–Pd1–Cl1 87.9(1), C25–Pd1–Cl1 91.2(1), C52–Pd1–Cl2 92.1(1), C25–Pd1–Cl2 88.8(1), Cl1–Pd1–Cl2 178.67(5).

phane–NHC–Pd⁰ and bis(NHC)–Pd⁰ complexes. To the best of our knowledge, our results provide the first case for the oxidative addition of small alkyl halides to NHC-stabilized Pd⁰ complexes.

Under mild conditions, p-nitroiodobenzene readily undergoes oxidative addition to the bis(NHC)-Pd⁰ complex stabilized by maleic anhydride.[11] In addition, Caddick and Cloke et al.[12] independently reported that the reaction of the bis(NHC)-Pd⁰ complex (4) with aryl chloride does not produce a four-coordinate complex at room temperature or even under heating conditions, but an arylimidazolium compound, a reductive-elimination product, is produced. In contrast to the above-mentioned results, our bis(NHC)-Pd⁰ complexes 3 and 4 smoothly underwent oxidative addition with organic halogenated solvents at room temperature (Scheme 5). In our case, a small steric requirement of organic reagents (dichloromethane and chloroform) seemed to be an important factor responsible for the observed oxidative addition reactivity. The molecular structures of 10 and 11 clearly demonstrate the steric congestion around the Pd metal, which may hinder organic halides from undergoing oxidative addition to NHC-Pd⁰ compounds.

Reactivity of PMe₃-NHC-Pd⁰ Complexes toward Organic Halides and a Chelated Phosphane

We further examined the reactivity of the PMe₃–NHC–Pd⁰ complex toward other organic halides, including bromobenzene, *trans*-1,2-dichloroethylene, and 5,5′-dibromo-2,2′-bithiophene (Scheme 6 and Scheme 7). Reactions of **2** with excess amounts of bromobenzene and *trans*-1,2-dichloroethylene at room temperature proceeded to give the expected oxidative addition products, [(Me₃P)Pd(C₆H₅)-Br(SIPr)] (**12**, 65% yield) or [(Me₃P)Pd(CH=CHCl)Cl-(SIPr)] (**13**, 39% yield), respectively, which were characterized by spectroscopy and elemental analyses. Unfortunately, the similar reaction with *cis*-ClCH=CHCl could not give pure products on account of its thermal instability in solution. Grusin and co-workers^[50] previously prepared a similar Pd–(aryl) complex from IPr·HCl and [(Ph₃P)₂-Pd₂Ph₂(μ-OH)₂].

Scheme 6.

Scheme 7.

FULL PAPER Y.-J. Kim et al.

A molecular structure of complexes 12 is presented in Figure 7. The coordination sphere Pd1 can be described as a square plane, and the Br and phenyl ligands are mutually *trans*. The molecular plane (P1, Br1, C1, C28, Pd1) is roughly planar with an average atomic displacement of 0.065(1) Å, and the phenyl ligands are essentially perpendicular to this plane with the dihedral angle of 84.78(7)°.

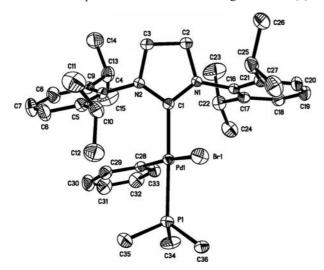


Figure 7. ORTEP drawing of **12**. Selected bond lengths [Å] and angles [°]: Pd1–C28 2.022(3), Pd1–C1 2.074(3), Pd1–P1 2.3185(8), Pd1–Br1 2.5178(4), N1–C1 1.351(3), N1–C16 1.445(3), N1–C2 1.480(3), N2–C1 1.342(3), N2–C4 1.433(3), N2–C3 1.473(3), C2–C3 1.488(4); C28–Pd1–C1 97.65(10), C28–Pd1–P1 82.95(8); C1–Pd1–P1 178.06(8), C28–Pd1–Br1 170.36(8).

The molecular structure of 13 in Figure 8 clearly reveals that trans-ClCH=CHCl undergoes C-Cl trans addition to the PMe₃-NHC-Pd⁰ complex. The oxidative addition of C-Cl bond of trans-1,2-dichloroethylene above and below the molecular plane of the PMe₃-NHC-Pd⁰ compound might have led to the formation of enantiomers (13A and 13B). The ORTEP drawing of 13 exhibits an enantiomeric pair. The enantiomers 13A (Figure 8, A) and 13B (Figure 8, B) have practically the same bond lengths and angles, and have the NHC ligand trans to the PMe3 ligand. The molecular plane in both enantiomers, defined by two C, one P, one Cl, and one Pd atoms, is essentially planar [the average atomic displacement is 0.0151(2) or 0.010(2) Å]. The carbene carbon atom (NCN) of the imidazoline ring appears as a doublet ($J_{P,C} = 194 \text{ Hz}$) at $\delta = 201.9 \text{ ppm}$ in the ¹³C NMR spectra.

Scheme 7 shows the oxidative addition of the C–Br bond of 5,5'-dibromo-2,2'-bithiophene to two Pd centers of complex **2** to give a dinuclear Pd^{II} complex (**14**) with a bridging bithiophene group. The two singlets assignable to the CH protons on the bridging thiophene rings spectra are observed at $\delta = 5.22$ and 6.38 ppm in the ¹H NMR spectra of complex **14**. In particular, the methine signals CH(CH₃)₂ of the 2,6-diisopropylphenyl groups appear as a normal septet (J = 6.4 Hz) at $\delta = 3.74$ ppm and a broad signal at $\delta = 3.42$ ppm, strongly indicating the free rotation of one imidazoline moiety. In spite of several attempts to improve the

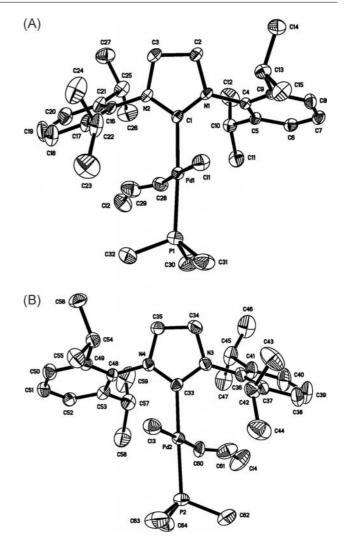


Figure 8. (A) ORTEP drawing of enantiomer A of complex 13. (B) ORTEP drawing of enantiomer B of complex 13. Selected bond lengths [Å] and angles [°]: Pd1–C28 2.014(6), Pd1–C1 2.041(4), Pd1–P1 2.296(2), Pd1–Cl1 2.373(1), Pd2–C60 2.077(5), Pd2–C33 2.047(4), Pd2–P2 2.292(1), Pd2–Cl3 2.353(1), N1–C1 1.351(5), N1–C2 1.468(5), N2–C1 1.342(5), N2–C3 1.451(5), N4–C33 1.349(5), N4–C48 1.441(5), N4–C35 1.471(5), N3–C33 1.353(5), N3–C36 1.444(5), N3–C34 1.462(5); C1–Pd1–P1 177.2(1), C28–Pd1–Cl1 176.5(2), C33–Pd2–P2 179.0(1), C60–Pd2–Cl3 176.7(2), N1–C1–N2 106.5(4), N4–C33–N3 106.3(4).

crystal quality for X-ray diffraction analysis, we obtained very thin plate-shaped crystals. As a result, the number of reflections with $I > 2\sigma(I)$ is small, and therefore the ratio of the number of reflections to the number of parameters is rather low (3505:373 in Table 1). However, the obtained molecular structure of 14 shows a definite atom—atom connectivity to clearly confirm its 3D structure (Figure 9).

We also attempted the ligand replacement of $PMe_3-NHC-Pd^0$ complex 1 with a chelating phosphane [dppp = 1,3-bis(diphenylphosphanyl)propane], as shown in Scheme 8.

This reaction proceeds smoothly to produce the bis(dppp)–Pd⁰ compound, [Pd(dppp)₂], in 69% yield, which was characterized by elemental analysis, NMR spec-

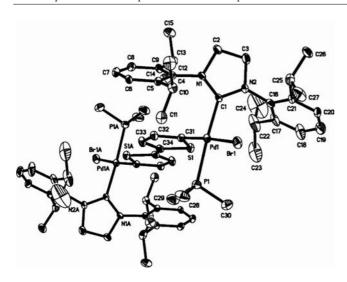


Figure 9. ORTEP drawing of complex **14·**C₆H₁₄. Unlabeled atoms are related to labeled ones by inversion. The co-crystallized hexane molecule is omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd1–C31 2.017(5), Pd1–C1 2.077(6), Pd1–P1 2.299(2), Pd1–Br1 2.4983(8), N1–C11.341(7), N1–C2 1.496(7), N2–C1 1.330(7), N2–C3 1.474(8); C31–Pd1–C1 95.2(2), C31–Pd1–P1 87.4(2), C1–Pd1–P1 176.5(2), C31–Pd1–Br1 172.1(2), C1–Pd1–Br1 90.8(1), N2–C1–N1108.1(6).

Scheme 8.

troscopy, and X-ray diffraction. The molecular structure of **15** (Figure 10) shows an extremely distorted tetrahedral structure. This reaction may reflect the higher lability of the

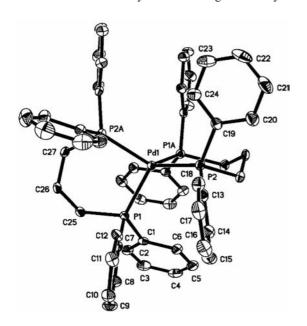


Figure 10. ORTEP drawing of **15**. Selected bond lengths [Å] and angles [°]: Pd1–P2 2.3239(7), Pd1–P1 2.3269(7); P2–Pd1–P2#1 121.62(4), P2–Pd1–P1#1 97.74(3).

PMe₃ and NHC ligands compared to the dppp ligand, which is expected to have chelating effects.

Conclusion

In summary, novel heteroleptic PMe₃–NHC–Pd⁰ complexes were prepared from a diethyl Pd^{II} compound, and then homoleptic bis(NHC)–Pd⁰ complexes were prepared by treating PMe₃–NHC–Pd⁰ complexes with one additional equivalent of NHC. Oxidative additions of various organic halides to these NHC complexes were investigated. In particular, we observed the facile oxidative addition of small alkyl halides such as dichloromethane and chloroform to these NHC–Pd⁰ complexes. Complex 6, [(Me₃P)ClPd-(CH=CHCl)(SIPr)], exhibits enantiomerism.

Experimental Section

General: All manipulations of air-sensitive complexes were performed under N₂ or Ar by standard Schlenk-line techniques. Solvents were distilled from Na–benzophenone. The analytical laboratories at Kangnung-Wonju National University carried out elemental analyses with a CE instruments EA1110. IR spectra were recorded with a Perkin–Elmer BX spectrophotometer. NMR (¹H, ¹³C{¹H}, and ³¹P{¹H}) spectra were obtained with a JEOL Lamda 300 and ECA 600 MHz spectrometer. Chemical shifts were referenced to internal Me₄Si or to external 85% H₃PO₄. Some of the X-ray analysis was carried out at the Jeonju Center at the Basic Science Institute of Korea. *trans*-[PdEt₂(PMe₃)₂] was prepared by the literature method. ^[16b] IPr [1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene] were prepared by the literature method ^[51] or purchased from Strem Chemical.

Preparations

 $[(Me_3P)Pd(IPr)]$ (1) and $[(Me_3P)Pd(SIPr)]$ (2): Styrene (0.604 g, 5.81 mmol) and THF (3 mL) were added sequentially to a Schlenk flask that contained trans-[PdEt₂(PMe₃)₂] (0.736 g, 2.32 mmol) at 0 °C. The mixture was heated at 55 °C for 1 h to give a vellow solution. At room temperature, IPr (0.885 g, 2.28 mmol) was added to the mixture, and then the initial colorless solution turned to an orange solution. After stirring the reaction mixture for 3 h, the solvent was removed completely under vacuum, and then the resulting oily residue was solidified with hexane. The solids were filtered and washed with hexane (2 mL × 3) to give pale yellow solids of 1 (0.852 g, 65%). ¹H NMR $(600 \text{ MHz}, C_6D_6, 10 \,^{\circ}\text{C})$: $\delta = 0.68 \,^{\circ}\text{[br., 9]}$ H, $P(CH_3)_3$], 1.12 [d, J = 6.8 Hz, 12 H, $CH(CH_3)_2$], 1.46 [br., 12 H, CH(CH₃)₂], 3.21 [br., 4 H, CH(CH₃)₂], 6.63 (br., 2 H, CH), 6.90-6.97 (m, 2 H, Ar-H), 7.05-7.10 (m, 2 H, Ar-H), 7.14-7.19 (m, 2 H, Ar–H), 7.22–7.29 (m, 2 H, Ar–H) ppm. ¹³C{¹H} NMR (151 MHz, [D₆]acetone, -40 °C): $\delta = 17.9$ [d, $J_{P,C} = 29$ Hz, P(CH₃)₃], 26.6, 26.9, 29.9, 30.0 [s, CH(CH₃)₂], 69.5 [s, CH(CH₃)₂], 107.6 (d, J_{PC} = 6.9 Hz, NCH=), 127.5, 128.5, 133.8, 139.7, 148.1, 152.4 (s, Ar–*C*), 178.5 (d, $J_{P,C}$ = 16 Hz, N*C*N) ppm. ³¹P{¹H} NMR (243 MHz, C₆D₆, 10 °C): δ = –28.6 (s) ppm.

Complex **2** (84%) was prepared in a similar way. ¹H NMR (600 MHz, C₆D₆, 10 °C): δ = 0.67 [d, J = 4.1 Hz, 9 H, P(CH₃)₃], 1.25 [d, J = 6.8 Hz, 12 H, CH(CH₃)₂], 1.60 [br., 12 H, CH(CH₃)₂], 3.42 [br., 8 H, CH₂, CH(CH₃)₂], 6.96–7.22 (m, 6 H, aromatic) ppm. ¹³C{¹H} NMR (151 MHz, C₆D₆, 10 °C): δ = 19.2 [d, J_{P,C} = 14 Hz,

P(*C*H₃)₃], 24.9, 28.6 [s, CH(*C*H₃)₂], 53.1 [s, *C*H(CH₃)₂], 123.8, 125.4, 138.4, 147.1 (s, Ar–*C*) . The 13 C signal due to the N*C*N for **2** could not be assigned due to the broadness. 31 P{ 1 H} NMR (243 MHz, C₆D₆ at 10 °C): δ = -28.8 (s) ppm.

[Pd(IRr)₂] (3) and [Pd(SIPr)₂] (4): At room temperature, a solution of IPr (0.417 g, 1.05 mmol) in toluene (7 mL) was added to a solution of $[(Me_3P)Pd(IPr)]$ (0.547 g, 0.96 mmol) in toluene (5 mL). The initial pale yellow solution slowly turned into an orange solution. After stirring for 3 h at room temperature, the solvent was completely removed under vacuum, and then the resulting oily residue was solidified with hexane. The solids were filtered and washed with hexane (2 mL × 3) to give yellow solids. Recrystallization from toluene gave yellow crystals of 3 (0.541 g, 64%). C₅₄H₇₂N₄Pd (883.60): calcd. C 73.40, H 8.21, N 6.34; found C 73.52, H 8.73, N 6.24. ¹H NMR (600 MHz, C_6D_6 , 23 °C): δ = 1.11 [d, J = 6.0 Hz, 24 H, $CH(CH_3)_3$], 1.20 [d, J = 6.0 Hz, 24 H, $CH(CH_3)_2$], 2.88 [sept, $J = 6.0 \text{ Hz}, 8 \text{ H}, \text{C}H(\text{CH}_3)_2$, 6.27 (s, 4 H, CH), 7.09 (d, J = 9.0 Hz, 8 H, Ar-H), 7.29 (t, J = 9.0 Hz, 4 H, Ar-H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (151 MHz, C_6D_6 , 23 °C): δ = 24.0, 25.1, 28.7 [s, $CH(CH_3)_2$], 121.2, 123.4, 128.6, 139.1, 146.0 (s, Ar-C), 198.8 (s, NCN) ppm.

Complex 4 (46%) was prepared analogously. The analytical data for 4 are identical to those in literature. $^{[18]}$

Complexes **3** and **4** were previously prepared from [Pd{P(otolyl)₃}₂] with IPr or SIPr by the groups of Caddick, Cloke,^[18] and Herrmann.^[19]

trans-[Pd(PMe₃)Et₂(IPr)] (5) and trans-[Pd(PMe₃)Et₂(SIPr)] (6): IPr (0.434 g, 1.12 mmol) solution dissolved in THF (4 mL) was added to a Schlenk flask that contained trans-[PdEt₂(PMe₃)₂] (0.354 g, 1.12 mmol) at 0 °C. After stirring the reaction mixture overnight at room temperature, the solvent was completely removed under vacuum. A dithyl ether/n-hexane mixture (3:1) was added to the resulting oily residue, and then it was stored in the freezer to give crude solids. The solids were filtered, washed with hexane (2 mL × 2), and recrystallized from dithyl ether to give white crystals of 5 (171 g, 24%). C₃₄H₅₅N₂PPd (629.21): calcd. C 64.90, H 8.81, N 4.45; found C 64.83, H 9.32, N 4.38. ¹H NMR (600 MHz, [D₆]acetone, -40 °C): $\delta = -0.11$ (dq, J = 7.3 Hz, 4 H, $Pd-CH_2$), 0.40 (dt, J = 2.3, 7.8 Hz, 6 H, $Pd-CH_2CH_3$), 1.07 [d, J= 7.8 Hz, 9 H, $P(CH_3)_3$, 1.11 [d, J = 6.8 Hz, 12 H, $CH(CH_3)_2$], 1.32 [d, J = 6.9 Hz, 12 H, $CH(CH_3)_2$], 3.31 [sept, J = 6.8 Hz, 4 H, $CH(CH_3)_2$], 7.30 (d, J = 7.8 Hz, 4 H, Ar–H), 7.40 (t, J = 7.8 Hz, 2 H, Ar-H), 7.48 (s, 2 H, CH=) ppm. ¹³C{¹H} NMR (151 MHz, [D₆]acetone, –40 °C): δ = 3.45 (d, $J_{P,C}$ = 10 Hz, Pd–CH₂), 14.7 [d, $J_{P,C} = 24 \text{ Hz}, P(CH_3)_3$, 17.4 (d, $J_{P,C} = 3.5 \text{ Hz}, CH_2CH_3$), 23.1 [s, $CH(CH_3)_2$], 25.9 [s, $CH(CH_3)_2$], 29.7 [s, $CH(CH_{3c})_2$], 122.9 (NCH=), 124.3, 129.5, 137.9, 146.1 (s, Ar–C), 196.0 (d, $J_{P,C}$ = 154 Hz, NCN) ppm. ${}^{31}P\{{}^{1}H\}$ NMR (243 MHz, [D₆]acetone, -40 °C): $\delta = -11.7$ (s) ppm.

Complex **6** (33%) was prepared analogously. $C_{34}H_{57}N_2PPd$ (631.22): calcd. C 64.69, H 9.10, N 4.44; found C 64.35, H 9.66, N 4.26. ^{1}H NMR (600 MHz, [D₆]acetone, -40 $^{\circ}C$): $\delta = -0.03$ (dq, J = 7.3 Hz, 4 H, Pd– CH_2), 0.35 (dt, J = 2.3, 7.3 Hz, 6 H, Pd– CH_2CH_3), 1.04 [d, J = 7.3 Hz, 9 H, P(CH_3)₃], 1.23 [d, J = 6.8 Hz, 12 H, CH(CH_3)₂], 1.37 [d, J = 6.9 Hz, 12 H, CH(CH_3)₂], 3.59 [sept, J = 6.9 Hz, 4 H, CH(CH_3)₂], 4.00 (s, 4 H, NC H_2), 7.24 (d, J = 7.3 Hz, 4 H, Ar–H), 7.30 (t, J = 7.5 Hz, 2 H, Ar–H) ppm. $^{13}C\{^{1}H\}$ NMR (151 MHz, [D₆]acetone, -40 $^{\circ}C$): $\delta = 2.18$ (d, $J_{P,C} = 10$ Hz, Pd– CH_2), 14.0 [d, $J_{P,C} = 23$ Hz, P(CH_3)₃], 16.8 (d, $J_{P,C} = 3.5$ Hz, Pd– CH_2CH_3), 23.4 [s, CH(CH_3)₂], 26.1 [s, CH(CH_3)₂], 28.4 [s, $CH(CH_3)_2$], 54.1 (d, $J_{P,C} = 5.2$ Hz, N CH_2), 124.0, 127.5, 137.8,

146.6 (s, Ar–*C*), 220.8 (d, $J_{P,C}$ = 146 Hz, N*C*N) ppm. ³¹P{¹H} NMR (243 MHz, [D₆]acetone, -40 °C): δ = -12.3 (s) ppm.

Reactivity of [(Me₃P)Pd(IPr)], [(Me₃P)Pd(SIPr)], [Pd(IPr)₂], and [Pd(SIPr)₂] toward Organic Halides (Dichloromethane, Chloroform, Bromobenzene, *trans*-1,2-Dichloroethylene, 5,5'-Dibromo-2,2'-bithiophene) and dppp

[(Me₃P)ClPd(CH₂Cl)(IPr)] (7), [(Me₃P)ClPd(CH₂Cl)(SIPr)] (8), [CIPd(CH₂Cl)(IPr)₂] (9), and [CIPd(CH₂Cl)(SIPr)₂] (10): Complex 1 (0.460 g, 0.81 mmol) was dissolved in CH₂Cl₂ (3 mL). After stirring for 3 h at room temperature, the solvent was completely removed under vacuum, and then the resulting oily residue was solidified with hexane. The solids were filtered and dried to give gray solids of crude products. The final products were recrystallized from a diethyl ether/hexane mixture to give final product 7 (0.443 g, 84%). C₃₁H₄₇Cl₂N₂PPd (656.02): calcd. C 56.76, H 7.22, N 4.27; found C 56.72, H 7.83, N 4.12. ¹H NMR (600 MHz, CDCl₃, -40 °C): $\delta = 1.12$ [d, J = 6.9 Hz, 6 H, CH(C H_{3c})₂], 1.15 [d, J =6.9 Hz, 6 H, $CH(CH_{3a})_2$], 1.20 [d, J = 9.7 Hz, 9 H, $P(CH_3)_3$], 1.36 [d, J = 6.9 Hz, 6 H, $CH(CH_{3b})_2$], 1.47 [d, J = 6.4 Hz, 6 H, $CH(CH_{3d})_2$], 2.79 [sept, J = 6.8 Hz, 2 H, $CH(CH_3)_{2e}$], 3.08 (d, J =7.3 Hz, 2 H, CH_2), 3.26 [sept, J = 6.8 Hz, 2 H, $CH(CH_3)_{2f}$], 7.15 (s, 2 H, CH=), 7.30 (d, J = 7.8 Hz, 2 H, Ar-H), 7.36 (d, J = 7.8 Hz, 2 H, Ar-H), 7.48 (t, J = 7.8 Hz, 2 H, Ar-H) ppm. 13 C 1 H 13 NMR (151 MHz, CDCl₃, -40 °C): δ = 12.9 [d, $J_{P,C}$ = 28 Hz, $P(CH_3)_3$], 23.0 [s, $CH(C_bH_3)_2$], 23.8 [s, $CH(C_dH_3)_2$], 26.4 [s, $CH(C_{c+a}H_3)_2$], 28.8 [s, $C_fH(CH_{3c})_2$], 28.9 [s, $C_eH(CH_{3c})_2$], 29.3 (s, CH_2), 123.7 (s, N-CH), 123.8, 123.9 (s, N-CH=), 124.5, 129.7, 135.5, 144.5, 146.9 (s, Ar–C), 183.6 (d, $J_{P,C} = 158 \text{ Hz}$, NCN) ppm. ${}^{31}P\{{}^{1}H\}$ NMR (243 MHz in CDCl₃, -40 °C): $\delta = -12.7$ (s) ppm.

Complex 8 (69%) was prepared analogously. C₃₂H₄₉Cl₂N₂PPd (670.04): calcd. C 56.58, H 7.51, N 4.26; found C 56.54, H 8.19, N 4.06. ¹H NMR (600 MHz, CDCl₃, -40 °C): δ = 1.15 [d, J = 9.7 Hz, 9 H, $P(CH_3)_3$, 1.26 [d, J = 6.8 Hz, 6 H, $CH(CH_{3c})_2$], 1.30 [d, J =6.4 Hz, 6 H, $CH(CH_{3a})_2$], 1.40 [d, J = 6.8 Hz, 6 H, $CH(CH_{3b})_2$], 1.53 [d, J = 6.8 Hz, 6 H, $CH(CH_{3d})_2$], 3.14 (d, J = 7.3 Hz, 2 H, CH_2), 3.16 [sept, J = 6.8 Hz, 2 H, $CH(CH_3)_{2e}$], 3.61 [sept, J =6.8 Hz, 2 H, $CH(CH_3)_{2f}$, 3.95 (m, 2 H, NCH_{2g}), 4.03 (m, 2 H, NCH_{2h}), 7.25 (dd, J = 1.4, 7.7 Hz, 2 H, Ar–H), 7.32 (dd, J = 1.4, 7.7 Hz, 2 H, Ar–H), 7.40 (t, J = 7.8 Hz, 2 H, Ar–H) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃, -40 °C): δ = 12.5 [d, $J_{P,C}$ = 28 Hz, $P(CH_3)_3$, 23.4 [s, $CH(C_bH_3)_2$], 24.3 [s, $CH(C_dH_3)_2$], 26.7 [s, $CH(C_cH_{3})_2$, 26.8 [s, $CH(C_aH_3)_2$], 28.4 [s, $C_fH(CH_{3c})_2$], 28.6 [s, $C_{\rm e}H(CH_{3\rm c})_2$, 29.2 (s, CH₂), 53.8 (s, N-CH₂), 53.9 (s, N-CH₂), 123.8, 124.6, 128.5, 135.5, 145.3, 147.7 (s, Ar-H), 209.8 (d, J_{PC} = 147 Hz, NCN) ppm. ${}^{31}P\{{}^{1}H\}$ NMR (243 MHz, CDCl₃, -40 °C): δ = -12.7 (s) ppm.

Complex 3 (0.177 g, 0.20 mmol) was dissolved in CH₂Cl₂ (3 mL). The initial orange mixture turned colorless. After stirring for 3 h at room temperature, the solvent was completely removed under vacuum, and then the resulting solids were crystallized from diethyl ether to give final product 9 (0.183 g, 94%). C₅₅H₇₄Cl₂N₄Pd

(968.53): calcd. C 68.21, H 7.70, N 5.78; found C 68.57, H 7.99, N 5.32. 1 H NMR (600 MHz, CD₂Cl₂, -40 °C): δ = 0.83 [d, J = 6.9 Hz, 12 H, CH(C H_3)₂], 0.89 [d, J = 7.3 Hz, 12 H, CH(C H_3)₂], 0.90 [d, J = 7.3 Hz, 12 H, CH(C H_3)₂], 0.96 [d, J = 6.9 Hz, 12 H, CH-(C H_3)₂], 2.66 [sept, J = 6.8 Hz, 4 H, CH(CH₃)₂], 3.04 [sept, J = 6.8 Hz, 4 H, CH(CH₃)₂], 3.05 (s, 2 H, C H_2), 6.83 (s, 4 H, CH=), 7.11, 7.13, 7.14, 7.15 (br., 8 H, Ar-H), 7.37 (t, J = 7.8 Hz, 4 H, Ar-H) ppm. 13 C{ 1 H} NMR (151 MHz, CD₂Cl₂, $^{-40}$ °C): δ = 22.5 [s, CH(CH₃)₂], 22.6 [s, CH(CH₃)₂], 26.2 [s, CH(CH₃)₂], 26.4 [s, CH(CH₃)₂], 28.1 [s, CH(CH₃)₂], 28.5 (s, CH₂), 123.4 (s, N-CH=), 123.5 (s, N-CH=), 124.1, 124.9, 124.2, 129.2, 129.3, 136.7, 145.3, 147.2 (s, Ar-C), 182.8 (s, NCN) ppm.

Complex **4** analogously produced **10** (53%). $C_{55}H_{78}Cl_2N_4Pd$ (972.56): calcd. C 67.92, H 8.08, N 5.76; found C 67.83, H 8.47, N 5.73. 1H NMR (600 MHz, CDCl₃, -30 °C): $\delta = 0.92$ [d, J = 6.9 Hz, 12 H, CH(CH₃)₂], 0.97 [d, J = 6.4 Hz, 12 H, CH(CH₃)₂], 1.00 [d, J = 6.9 Hz, 12 H, CH(CH₃)₂], 1.08 [d, J = 6.4 Hz, 12 H, CH(CH₃)₂], 3.07 (s, 2 H, CH₂), 3.08 [sept, J = 6.4 Hz, 4 H, C-H(CH₃)₂], 3.40 [sept, J = 6.9 Hz, 4 H, CH(CH₃)₂], 3.70 (m, 8 H, NCH₂), 7.06, 7.07, 7.08, 7.09 (br., 8 H, Ar–H), 7.27 (t, J = 7.3 Hz, 4 H, Ar–H) ppm. 13 C{ 1H } NMR (151 MHz, CDCl₃, -30 °C): $\delta = 23.4$ [s, CH(CH₃)₂], 23.9 [s, CH(CH₃)₂], 26.8 [s, CH(CH₃)₂], 29.2 (s, CH₂), 54.0 (s, N–CH₂), 124.0, 124.9, 128.4, 137.4, 146.2, 148.2 (s, Ar–C), 209.0 (s, NCN) ppm.

[Pd(IPr)₂Cl₂] (11): Complex **3** (0.152 g, 0.17 mmol) was dissolved in CHCl₃ (3 mL). The initial yellow mixture turned colorless. After stirring for 3 h, the solvent was completely removed under vacuum, and then the resulting solids were crystallized from a diethyl ether to give white crystals of **11** (0.137 g, 79%). ¹H NMR (600 MHz, CD₂Cl₂, -40 °C): δ = 0.89 [d, J = 6.9 Hz, 24 H, CH(CH₃)₂], 0.93 [d, J = 6.8 Hz, 24 H, CH(CH₃)₂], 2.86 [sept, J = 6.8 Hz, 8 H, CH(CH₃)₂], 6.83 (s, 4 H, NCH=), 7.12 (d, J = 7.7 Hz, 8 H, Ar–H), 7.42 (t, J = 7.8 Hz, 4 H, Ar–H) ppm. ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, -40 °C): δ = 22.7 [s, CH(CH₃)₂], 26.0 [s, CH(CH₃)₂], 28.2 [s, CH(CH₃)₂], 123.8 (s, N–CH=), 124.3, 129.4, 136.7, 146.2 (s, Ar–C), 171.7 (s, NCN) ppm. C₅₄H₇₂Cl₂N₄Pd (954.50): calcd. C 67.95, H 7.60, N 5.87; found C 68.10, H 8.12, N 5.82.

[(Me₃P)BrPd(C₆H₅)(SIPr)] (12):Bromobenzene 0.60 mmol) and THF (2 mL) were sequentially added to a Schlenk flask that contained 2 (0.230 g, 0.40 mmol) at room temperature. After stirring for 3 h at room temperature, the solvent was completely removed under vacuum, and then the resulting oily residue was solidified with hexane. The solids were filtered and washed with hexane $(2 \text{ mL} \times 3)$ to give yellow solids of 12 (0.189 g, 65%). C₃₆H₅₂BrN₂PPd (730.11): calcd. C 59.22, H 7.18, N 3.84; found C 59.57, H 7.50, N 3.74. 1 H NMR (600 MHz, CDCl₃, 23 $^{\circ}$ C): δ = 0.75 [d, J = 9.7 Hz, 9 H, $P(CH_3)_3$], 0.80 [d, J = 6.4 Hz, 6 H, $CH(CH_3)_{3c}$], 1.07 [d, J = 6.4 Hz, 6 H, $CH(CH_3)_{3a}$], 1.25 [d, J =6.4 Hz, 6 H, $CH(CH_3)_{3b}$], 1.58 [d, J = 6.4 Hz, 6 H, $CH(CH_3)_{3d}$], 3.12 [sept, J = 6.4 Hz, 2 H, $CH(CH_3)_{2e}$], 4.03 [sept, J = 6.4 Hz, 2 H, $CH(CH_3)_{2f}$, 3.88–3.91 (m, 2 H, NCH_2), 4.09–4.12 (m, 2 H, NCH_2), 6.19 (m, 2 H, Ar–H), 6.56 (m, 3 H, Ar–H), 7.13 (d, J =7.8 Hz, 2 H, Ar-H), 7.35 (d, J = 6.0 Hz, 2 H, Ar-H), 7.39 (t, J =7.8 Hz, 2 H, Ar–H) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃, 23 °C): $\delta = 14.0 \text{ [d, } J_{P,C} = 28 \text{ Hz, } P(CH_3)_3], 22.6 \text{ [s, } CH(C_bH_3)_2], 25.1 \text{ [s, }$ $CH(C_dH_3)_2$], 26.4 [s, $CH(C_cH_3)_2$], 26.9 [s, $CH(C_aH_3)_2$], 28.4 [s, $C_{\rm f}H({\rm CH_{3c}})_2$], 28.7 [s, $C_{\rm e}H({\rm CH_{3c}})_2$], 53.8 (s, N-CH₂), 53.9 (s, N- CH_2), 121.5, 123.7, 124.8, 126.6, 128.5, 137.7 (t, $J_{P,C} = 4.5 \text{ Hz}$), 146.5, 148.5, 152.1 (s, Ar–C), 210.3 (d, $J_{P,C}$ = 149 Hz, NCN) ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, 23 °C): δ = -14.8 (s) ppm.

 $[(Me_3P)ClPd(CH=CHCl)(SIPr)]$ (13): trans-Dichloroethylene (0.548 g, 5.7 mmol) and THF (4 mL) were sequentially added to a Schlenk flask that contained 2 (0.325 g, 0.57 mmol) at room temperature. After stirring for 3 h at room temperature, the solvent was completely removed under vacuum, and then the resulting residue was extracted with an excess amount of n-hexane. The collected filtrates were stored in the freezer to give white solids and then recrystallized from *n*-hexane to give white crystals of 13 (0.149 g, 39%). C₃₂H₄₉Cl₂N₂PPd (670.04): calcd. C 57.36, H 7.37, N 4.18; found C 57.47, H 7.80, N 3.94. ¹H NMR (600 MHz, CDCl₃ at -40 °C): $\delta = 1.05$ [d, J = 11 Hz, 9 H, P(C H_3)₃], 1.23 [d, J = 6.8 Hz, 12 H, $CH(CH_3)_3$, 1.48 [d, J = 6.4 Hz, 12 H, $CH(CH_3)_3$], 3.22 [sept, $J = 7.0 \text{ Hz}, 2 \text{ H}, \text{ C}H(\text{CH}_3)_2$, 3.65 [sept, J = 7.0 Hz, 2 H, CH- $(CH_3)_2$, 3.81 (d, J = 14 Hz, Pd–CH=CH), 3.90 (s, 2 H, NC H_2), 4.09 (s, 2 H, NC H_2), 5.74 (dd, J = 5.5, 14 Hz, Pd–CH=CH), 7.25 (d, J = 7.8 Hz, 4 H, Ar-H), 7.37 (t, J = 7.8 Hz, 2 H, Ar-H) ppm. ¹³C{¹H} NMR (151 MHz in CDCl₃ at -40 °C): δ = 13.1 [d, $J_{P,C}$ = 29 Hz, P(CH₃)₃], 23.2, 24.3, 26.7, 28.4 [s, CH(CH₃)₂], 54.0 (s, NCH_2), 104.1 (t, $J_{P,C} = 10 \text{ Hz}$, Pd–CH), 123.8, 128.4, 136.0, 145.9 (s, Ar–C), 207.5 (d, $J_{P,C} = 156 \text{ Hz}$, NCN) ppm. $^{31}P\{^{1}H\}$ NMR (243 MHz in CDCl₃ at -40 °C): $\delta = -12.6$ (s) ppm.

 $[{(Me_3P)(SIPr)BrPd}_2(\mu-C_4H_2S-C_4H_2S)]$ (14): 5,5'-Dibromo-2,2'bithiophene (0.066 g, 0.20 mmol) and THF (4 mL) were sequentially added to a Schlenk flask that contained 1 (0.239 g, 0.42 mmol) at room temperature. The initial insoluble material slowly dissolved to give a yellow solution. After stirring for 3 h at room temperature, the solvent was completely removed under vacuum, and then the resulting oily residue was solidified with hexane. The solids were filtered and washed with a diethyl ether (1 mL) to give yellow solids and recrystallized from an excess amount of diethyl ether to give yellow crystals of 14 (0.231 g, 77%). $C_{68}H_{98}Br_2N_4P_2Pd_2S_2$ (1470.26): calcd. C 55.55, H 6.72, N 3.81; found C 55.94, H 7.27, N 3.57. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta = 0.89$ [d, J = 9.6 Hz, 18 H, P(C H_3)₃], 1.07 [d, J = 5.9 Hz, 12 H, CH(C H_3)₂], 1.16 [d, J = 6.9 Hz,12 H, CH(C H_3)₂], 1.26 [d, J $= 6.9 \text{ Hz}, 12 \text{ H}, \text{CH}(\text{C}H_3)_2$, $1.62 \text{ [d}, J = 6.4 \text{ Hz}, 12 \text{ H}, \text{CH}(\text{C}H_3)_2$], 3.42 [br., 4 H, $CH(CH_3)_2$], 3.74 [sept, J = 6.4 Hz, 4 H, CH- $(CH_3)_2$], 3.90–3.96 (m, 8 H, NC H_2), 5.38 (d, J = 3.2 Hz, 2 H, SCH=), 6.42 (d, J = 3.2 Hz, 2 H, SCH=), 7.10 (d, J = 1.4 Hz, 2 H, Ar-H), 7.11 (d, J = 0.9 Hz, 2 H, Ar-H), 7.29 (d, J = 1.4 Hz, 2 H, Ar-H), 7.30 (d, J = 1.4 Hz, 2 H, Ar-H), 7.36 (d, J = 1.4 Hz, 2 H, Ar–H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (151 MHz, CDCl₃, -20 °C): $\delta =$ 13.4 [d, $J_{PC} = 29 \text{ Hz}$, $P(CH_3)_3$], 23.2 [s, $CH(CH_3)_2$], 25.1 [s, $CH(CH_3)_2$], 26.7 [s, $CH(CH_3)_2$], 27.0 [s, $CH(CH_3)_2$], 28.6 [s, $CH(CH_3)_2$, 28.9 [s, $CH(CH_{3c})_2$], 54.3 (N CH_2), 120.1, 122.0, 123.9,124.7, 128.6,129.5, 137.1, 138.4, 141.4, 146.3, 147.4 (s, Ar-H), 206.0 (d, $J_{P,C}$ = 165 Hz, NCN) ppm. ³¹P{¹H} NMR (243 MHz, CDCl₃, -20 °C): $\delta = -12.1$ (s) ppm.

[Pd(dppp)₂] (15): A solution of dppp in THF (0.220 g, 0.53 mmol) was added to a solution of **1** (0.304 g, 0.53 mmol) in THF (1 mL) at -40 °C. The reaction mixture was slowly warmed up to room temperature. After stirring the reaction mixture for 2 h, the yellow solids gradually precipitated. The resulting suspension was completely evaporated to give crude solids, which was washed with *n*-hexane and diethyl ether. The isolated solids were recrystallized from THF/*n*-hexane to give yellow crystals of **15** (0.171 g, 69%). C₅₄H₅₂P₄Pd (931.30): calcd. C 69.64, H 5.62; found C 69.25, H 5.82. ¹H NMR (600 MHz, C₆D₆, 23 °C): δ = 1.42 (br., 4 H, $-CH_2$), 2.25 (br., 8 H, $P-CH_2$), 6.90–7.01 (m, 24 H, Ar–*H*), 7.50 (br., 16 H, Ar–*H*) ppm. ³¹P{¹H} NMR (243 MHz, C₆D₆, 23 °C): δ = 4.46 (s) ppm.

Complex 15 was independently prepared from $[Pd(C_2H_4)(dppp)]$ with $dppp.^{[52]}$

FULL PAPER Y.-J. Kim et al.

X-ray Structure Determination: All X-ray data were collected with a Bruker Smart APEX or APEX2 diffractometer equipped with an Mo X-ray tube. Collected data were corrected for absorption with SADABS based upon the Laue symmetry by using equivalent reflections.^[53] All calculations were carried out with SHELXTL programs.^[54] All structures were solved by direct methods. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were generated in ideal positions and refined in a riding model

CCDC-802827 (for 6), -802828 (for 7), -802829 (for 8), -802830 (for 10), -802831 (for $11\cdot \mathrm{Et_2O}$), -802832 (for 12), -802833 (for 13), -802834 (for $14\cdot \mathrm{C_6H_{14}}$) and -802835 (for 15) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science, and Technology of Korea (grant number 2009-0074917)

- E. A. B. Kantchev, C. J. O'Brien, M. G. Organ, Angew. Chem. Int. Ed. 2007, 46, 2768–2813.
- [2] a) N. Marion, S. P. Nolan, Acc. Chem. Res. 2008, 41, 1440–1449;
 S. P. Nolan (Ed.), N-Heterocyclic Carbenes in Organic Synthesis, Wiley-VCH, New York, 2006;
 b) S. Diez-Gonzalez, S. P. Nolan, Top. Organomet. Chem. 2007, 21, 47–82.
- [3] F. A. Glorious (Ed.), N-Heterocyclic Carbenes in Transition Metal Catalysis, Topics in Organometallic Chemistry, vol. 21, Springer-Verlag, Berlin/Heidelberg, Germany, 2007.
- [4] W. A. Herrmann, M. Elison, J. Fisher, C. Kocher, G. R. J. Artus, Angew. Chem. Int. Ed. Engl. 1995, 34, 2371–2374.
- [5] G. Wilkinson, F. G. A. Sone, E. W. Abel, Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1982, vol. 6, pp. 243– 260
- [6] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.
- [7] I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009– 3066.
- [8] J. K. Stille, Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524.
- [9] E. Negishi, Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley, 2002, vol. I, p. 1051.
- [10] C. M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247–2273.
- [11] a) D. S. McGuinness, M. J. Green, K. J. Cavell, B. W. Skelton, A. H. White, *J. Organomet. Chem.* **1998**, *565*, 165–178; b) D. S. McGuinness, K. J. Cavell, B. W. Skelton, A. H. White, *Organometallics* **1999**, *18*, 1596–1605.
- [12] a) S. Caddick, F. G. N. Cloke, P. B. Hitchcock, J. Leonard, A. K. de K. Lewis, D. McKerrecher, L. R. Titcomb, Organometallics 2002, 21, 4318–4319; b) A. K. de K. Lewis, S. Caddick, F. G. N. Cloke, N. C. Billingham, P. B. Hitchcock, J. Leonard, J. Am. Chem. Soc. 2003, 125, 10066–10073; c) A. K. de K. Lewis, S. Caddick, O. Esposito, F. G. N. Cloke, P. B. Hitchcock, Dalton Trans. 2009, 7094–7098.
- [13] a) T. Schaub, M. Backes, O. Plietzsch, U. Radius, *Dalton Trans.* 2009, 7071–7079; b) T. Schaub, M. Backes, U. Radius, *Eur. J. Inorg. Chem.* 2008, 2680–2690; c) T. Schaub, M. Backes, U. Radius, *Chem. Commun.* 2007, 2037–2039; d) T. Schaub, U. Radius, *Chem. Eur. J.* 2005, 11, 5024–5030.
- [14] a) J. C. Green, B. J. Herbert, R. Lonsdale, J. Organomet. Chem. 2005, 690, 6054–6067; b) J. C. Green, B. J. Herbert, Dalton Trans. 2005, 1214–1220.
- [15] R. B. Jordan, Organometallics 2007, 26, 4763-4770.
- [16] a) F. Ozawa, T. Ito, Y. Nakamura, A. Yamamoto, J. Organomet. Chem. 1979, 168, 375–391; b) Y.-J. Kim, K. Osakada,

- A. Takenaka, A. Yamamoto, *J. Am. Chem. Soc.* **1990**, *112*, 1096–1104.
- [17] Y.-J. Kim, S.-W. Song, S.-C. Lee, S. W. Lee, K. Osakada, T. Yamamoto, J. Chem. Soc., Dalton Trans. 1998, 1775–1779.
- [18] a) L. R. Titcomb, S. Caddick, F. G. N. Cloke, D. J. Wilson, D. McKerrecher, *Chem. Commun.* 2001, 1388–1389; b) K. Arentsen, S. Caddick, F. G. N. Cloke, A. P. Herring, P. B. Hitchcock, *Tetrahedron* 2004, 45, 3511–3515.
- [19] a) V. P. W. Böhm, C. W. K. Gstöttmayr, T. Weskamp, W. A. Herrmann, J. Organomet. Chem. 2000, 595, 186–190; b) C. W. K. Gstöttmayr, V. P. W. Böhm, E. Herdtweck, M. Grosche, W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1363–1365.
- [20] S. Fantasia, S. P. Nolan, Chem. Eur. J. 2008, 14, 6987–6993.
- [21] a) T. Ito, H. Tsuchiya, A. Yamamoto, Bull. Chem. Soc. Jpn. 1977, 50, 1319–1327; b) F. Ozawa, A. Yamamoto, J. Am. Chem. Soc. 1980, 102, 6457–6463; c) A. Yamamoto, J. Organomet. Chem. 1986, 300, 347–367.
- [22] J. M. Wisner, T. J. Bartczak, J. A. Ibers, Organometallics 1986, 5, 2044–2050.
- [23] W. de Graaf, J. Boersma, W. J. J. Smeets, A. L. Spek, G. van Koten, *Organometallics* **1989**, *8*, 2907–2917.
- [24] P. Leoni, Organometallics 1993, 12, 2432–2434.
- [25] a) R. McCrindle, G. Ferguson, A. J. McAlees, G. J. Arsenault, A. Gupta, M. C. Jennings, *Organometallics* 1995, 14, 2741–2748; b) R. McCrindle, G. J. Arsenault, R. Farwaha, A. J. McAlees, D. W. Sneddon, J. Chem. Soc., Dalton Trans. 1989, 761–766.
- [26] H. Günther, NMR Spectroscopy: An Introduction, Wiley, New York, 1980.
- [27] J. Kermode, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1981, 698–699.
- [28] C. A. Ghilardi, S. Midollini, A. Oriandini, J. A. Ramirez, J. Chem. Soc., Chem. Commun. 1989, 304–306.
- [29] O. J. Scherer, H. Jungmann, J. Organomet. Chem. 1981, 208, 153–159.
- [30] P. K. Monaghan, R. J. Puddephatt, Organometallics 1985, 4, 1406–1412.
- [31] M. Huser, M.-T. Youinou, J. A. Osborn, Angew. Chem. Int. Ed. Engl. 1989, 28, 1386–1388.
- [32] A. L. Balch, C. T. Hunt, C.-L. Lee, M. M. Olmstead, J. P. Farr, J. Am. Chem. Soc. 1981, 103, 3764–3772.
- [33] J. V. Caspar, J. Am. Chem. Soc. 1985, 107, 6718-6719.
- [34] H. Werner, W. Paul, J. Organomet. Chem. 1982, 236, C71-C74.
- [35] E. G. Burns, S. S. C. Chu, P. de Meester, M. Lattman, Organometallics 1986, 5, 2383–2384.
- [36] T. B. Marder, W. C. Fultz, J. C. Calabrese, R. L. Harlow, D. Milstein, J. Chem. Soc., Chem. Commun. 1987, 1543–1545.
- [37] P. J. Fennis, P. H. M. Budzelaar, J. H. G. Frijns, A. G. Orpen, J. Organomet. Chem. 1990, 393, 287–298.
- [38] M. A. Ciriano, M. A. Tena, L. A. Oro, J. Chem. Soc., Dalton Trans. 1992, 2123–2124.
- [39] K. Kashiwabara, A. Morikawa, T. Suzuki, K. Isobe, K. Tatsumi, J. Chem. Soc., Dalton Trans. 1997, 1075–1081.
- [40] J. Y. Zeng, M.-H. Hsieh, H. M. Lee, J. Organomet. Chem. 2005, 690, 5662–5671.
- [41] a) J. Ito, T. Miyakwa, H. Nishiyama, Organometallics 2006, 25, 5216–5218; b) H. Nishiyama, M. Horihata, T. Hirai, S. Wakamatsu, K. Itoh, Organometallics 1991, 10, 2706–2708; c) J. Ito, T. Miyakawa, H. Nishiyama, Organometallics 2008, 27, 3312–3315
- [42] C. Tejel, M. A. Ciriano, L. A. Oro, A. Tiripicchio, F. Ugozzoli, Organometallics 2001, 20, 1676–1682.
- [43] G. E. Ball, W. R. Cullen, M. D. Fryzuk, B. R. James, S. J. Rettig, *Organometallics* 1991, 10, 3767–3769.
- [44] J. Chang, R. G. Berman, J. Am. Chem. Soc. 1987, 109, 4298– 4304.
- [45] D. A. Freeman, K. R. Mann, Inorg. Chem. 1991, 30, 836-840.
- [46] C. Tejel, M. A. Ciriano, S. Jimenz, L. A. Oro, C. Graiff, A. Tiripicchio, Organometallics 2005, 24, 1105–1111.

- [47] J. A. Labinger, J. A. Osborn, N. Coville, *Inorg. Chem.* 1980, 19, 3236–3243.
- [48] W. L. Olson, D. A. Nagaki, L. F. Dahl, Organometallics 1986, 5, 630–634.
- [49] H. H. Murray, J. P. Fackier Jr., A. M. Mazany, *Organometallics* 1984, 3, 1310–1311.
- [50] W. J. Marshall, V. V. Grushin, Organometallics 2003, 22, 1591– 1593.
- [51] L. Jafarpour, E. D. Stevens, S. P. Nolan, J. Organomet. Chem. 2000, 606, 49–54.
- [52] G. T. L. Broadwood-Strong, P. A. Chaloner, P. B. Hitchcock, Polyhedron 1993, 12, 721–729.
- [53] G. M. Sheldrick, *SADABS*, Program for Absorption Correction, University of Göttingen, **1996**.
- [54] Bruker, SHELXTL, Structure Determination Software Programs, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1997.

Received: December 2, 2010 Published Online: March 4, 2011